Isolated Sentences Recognition using Vector Quantization and Neural Networks
نویسندگان
چکیده
This paper shows a way to combine speech recognition techniques based on Vector Quantization (VQ) with Neural Networks (NN). Vector Quantization has proved its usefulness for isolated words recognition, but it is also useful for isolated sentences recognition. One way to improve the performance of this technique is to add an NN block that will help the performance of the VQ recognizer.
منابع مشابه
Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملWavelet Transform Speech Recognition Using Vector Quantization, Dynamic Time Warping and Artificial Neural Networks
In this paper we investigate the performance of the Discrete Wavelet Transform (DWT) with Dynamic Time Warping, Vector Quantization and Artificial Neural Networks for speaker-dependent, isolated word recognition. Wavelet Transforms have demonstrated good time-frequency localization properties and are appropriate tools for the analysis of non-stationary signals like speech. Moreover, unlike LPC,...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کامل